基本初等函数求导公式及概念整理

基本初等函数求导公式及概念整理

日期: 人气:
商城:高三网
基本初等函数求导公式及概念整理

基本初等函数求导公式整理

1.y=c y'=0

2. y=α^μ y'=μα^(μ-1)

3. y=a^x y'=a^x lna

y=e^x y'=e^x

4. y=loga,x y'=loga,e/x

y=lnx y'=1/x

5. y=sinx y'=cosx

6. y=cosx y'=-sinx

7. y=tanx y'=(secx)^2=1/(cosx)^2

8. y=cotx y'=-(cscx)^2=-1/(sinx)^2

9. y=arc sinx y'=1/√(1-x^2)

10.y=arc cosx y'=-1/√(1-x^2)

11.y=arc tanx y'=1/(1+x^2)

12.y=arc cotx y'=-1/(1+x^2)

13.y=sh x y'=ch x

14.y=ch x y'=sh x

15.y=thx y'=1/(chx)^2

16.y=ar shx y'=1/√(1+x^2)

17.y=ar chx y'=1/√(x^2-1)

18.y=ar th y'=1/(1-x^2)

基本初等函数的介绍

在数学中, 不严格地说, 初等函数是由常函数, 幂函数, 指数函数, 对数函数, 三角函数和反三角函数经过有限次的四则运算(加, 减, 乘, 除和有限次幂运算) 及有限次函数复合所产生的函数, 而且可以在其定义域上由"单一表达式"表出。

对于实自变量 来说, 基本初等函数定义如下:

常数函数: y=c , c为实数。

有理函数: y=p(x)/q(x) , 其中 p(x),q(x) 都是多项式。

指数函数:y=aˣ (a>0且a≠1)。

对数函数: y=logₐx (a>0且a≠1). 对数函数定义在 (0,+∞)上。

幂函数: y=xʳ ,r∈R 。

三角函数: 正弦函数y=sinx , 余弦函数 y=cosx 以及作为其分式的正切, 余切, 正割和余割函数.

反三角函数: 反正弦函数主值 y=arcsinx (值域为 [-π/2,π/2] ), 反余弦函数主值 arccosx (值域为[0,π] ), 以及作为两个反三角函数与幂函数复合的反正切, 反余切, 反正割和反余割函数。

高三网

0 留言

评论

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。